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Classical solutions of a nonlinear field equation 
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Institut fur Theoretische Physik der Universitat Graz, A-8010 Graz, Austria 

Received 17 January 1979 

Abstract. The field equation for a complex scalar field with a cubic nonlinear term is studied 
in four-dimensional Minkowski space. Two classes of exact solutions corresponding to 
plane and spherical waves are presented. 

1. Introduction 

For a long time the classical solutions of linear (free) field equations have formed the 
basis for the corresponding quantum field theory, even for nonlinear field equations, 
where the superposition principle of solutions does not hold. In recent years this 
attitude has changed. Special types of solution, which are intimately connected with the 
nonlinearity of the field equation, have been the focus of interest. There are also new 
attempts to quantise nonlinear field equations starting directly from the corresponding 
classical solutions. It seems therefore appropriate to learn as much as possible about 
classical solutions of nonlinear model field theories. 

In the following sections we shall consider one of the simplest models: a scalar field 
with quartic self-coupling in the Lagrangian. Because of its simplicity this model is of 
interest by itself; in addition, the corresponding nonlinear equation has also found 
interest in connection with gauge field theory. It is not the scope of this paper to look for 
all possible applications or interpretations. Instead we shall adopt a very simple- 
minded approach: considering the field equation as a wave equation, we shall require 
some symmetry properties of the solutions (as one does, for instance, in Maxwell’s 
theory). It turns out that at least for two classes of solutions the symmetry requirement 
fixes the classical solutions completely. The magnitude of the solutions can be given 
explicitly in terms of well-known functions, whereas the phase is determined by 
integrals which can be evaluated only in special cases. The manifold of solutions 
obtained is parametrised by certain constants which are connected with boundary 
values for the wave field. 

2. Field equation and physical quantities 

The classical field to be studied here is a complex, scalar field A(x) in Minkowski space: 
2 0 2  x w  = (xO, x), x =xcrx”=(x ) --x.x. 

The field is to be determined from the nonlinear equation 

OA - hAA*A = 0. (1) 
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We shall consider both signs of the (real) coupling constant A. The Lagrangian density is 

L(x)  = &a,A*)(a”A) +$A (A*A)‘. 

H ( x )  = $[ldoAIZ+ IVA12-$A (A*A)2],  

P ( x )  = -$[(aoA*)(vA) + (aOA)(VA*)], 

j ’ ( x )  =i-’(A* a”A - A  $’A*). 

(2) 

Other quantities of interest are the energy density 

(3) 

the momentum density 

(4) 

and the current density 

( 5 )  

The energy density is positive definite for A c 0. We shall observe, however, that there 
are also solutions of equation (1) which yield H positive definite also for A > 0. 

As a consequence of equation (1) we note the local conservation laws 

a,j” = 0 (6 )  

aoH +V. P= 0.  (7) 

and 

There are, in fact, a number of similar equations for other densities which will not be 
considered here. All these equations are connected with transformations which leave 
equation (1) invariant. This is the case for translations, h r e n t z  transformations, 
dilatations, conformal transformations and phase transformations A -* e’”A. Because 
of the latter invariance A is only fixed up to a constant phase factor. If we write A in the 
form 

A = R (x) e’“”’, 

with real R and 4, we can restrict the discussion to positive values of R. A solution with 
constant (b has j” = 0 and will be called a real field. With respect to Lorentz trans- 
formations we shall consider only invariant solutions, since we want A to be a Lorentz 
scalar. The other invariances mean that, with any solution A b ) ,  A(x + b) ,  

A ’ b )  = vA(vx) (8) 

A’Yx) = ( l / a ( x ,  ~ ) ) A ( Y ) ,  (9) 

y ”  = ( x 2 / a ( x ,  b ) ) ( X ” / X ’ + b ” ) ,  (10) 

are also solutions of equation (1). Here 77 is an arbitrary real constant, and b” is an 
arbitrary real four-vector. In general we cannot expect that the solutions of equation 
(1) are also invariant, i.e. A’(x) =A(x) ,  A”(x)-A(x) .  There are, however, some 
invariant solutions. 

We shall now determine all solutions of equation (1) which correspond, in analogy to 
linear wave equations, to certain wave types, i.e. ( a )  plane waves and ( b )  spherical 
waves. 

and 

with 

a ( x ,  b )  = 1 + 2bx + b 2 X 2  
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3. Plane waves 

The first type of solution to be considered is one for which A depends on x only through 

P & X W  = p o x o - p * ~ ,  

with a fixed vector p'. Fields of this type correspond to waves whose fronts are planes 
perpendicular to p and propagate in the direction of this vector. Of course the most 
general plane wave would also contain signals propagating in the opposite direction, i.e. 
A should also depend on p o x o + p  . x. For simplicity, however, we shall consider only 
one coordinate here. Then we must have p z  # 0 (otherwise there is no non-trivial 
solution). We shall use the abbreviations 

g = U P 2 ,  T =  J M P d L X ,  E = sgn g,  ( 1 1 )  

A = R (T) ei4('). 

d(R2Q)/dT = 0. (13) 

6 = D/2R2,  (14) 

and write 

( 1 2 )  
Denoting the derivative with respect to T by a dot, we obtain from equation ( 6 )  

Thus we have 

with a real integration constant D. The differential equation for the radial part is 
obtained from equation ( 1 )  and reads 

R - €R3 - D z / 4 R 2  = 0. 

We note immediately that, with any solution R ( T ) ,  4 ( ~ ) ,  R ( T + M ) ,  ~ ( T , M )  is also a 
solution, where M is an arbitrary constant. We can use this freedom to fix the initial 
conditions at a special value of T, e.g. T = 0. 

The differential equation for R can be integrated once to give 

Rz - $€R4 + D 2 / 4 R 2  + C = 0, 

with another real integration constant C. Introducing 

p = R2, 

the differential equation becomes 

p 2 = - D 2 - 4 C p + 2 ~ p 3 .  

Thus we have 

where 

~ ( x ) = E x ~ - ~ C X - D ' / ~  (17) 
and po = p(0 ) .  The integral on the RHS of equation (16) is an elliptic integral: thus p is an 
elliptic function. The explicit form depends on the situation of the roots of the cubic 
form (17) which can be written in terms of C, D and E .  The possibilities can be exhibited 
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graphically. Since x corresponds to R2 and T is real, only the regions with f(x) > 0 for 
positive x are physically relevant. For D = 0 (real field) we have three typical cases I, I1 
and 111, shown in figures l(a), ( b )  and ( c )  respectively. 

I 

Figare 1. (a) Case I: E = 1, C 
(c) E = -1, C < 0, three real roots. 

0, one real root. ( b )  Case 11: B = 1, C > 0, three real roots. 

For E = -1 and C > O  we have f < O  for positive x ;  therefore this case must be 
excluded. These three cases are also relevant in the general case ( D  # 0). For case 111, 
however, 0’ must be small enough to guarantee the existence of a region with positive f. 
Since D is proportional to the charge carried by the field (cf equation (19)), case I11 
corresponds to solutions for which the charge is physically limited. 

We shall express the solutions in terms of Jacobian elliptic functions sn( w/k), cn, dn 
and the elliptic integral F ( k / $ ) .  The argument w (7)  (which is linear in T ) ,  the modulus k 
(0 s k c 1) and the angle 4 are given in terms of some constants which will be specified 
in terms of the initial data below. The solutions in the three cases of physical relevance 
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read as follows. If the cubic form has two complex roots and one real root al 3 0 and 
E = 1 we have 

p = a1 + B  cn2(wl(k,)/sn2(w,lkl) dn2(wllkl), 

For three real roots a2 > bl > b2 and E = 1 we have 

For three real roots and E = -1 we have 

p = a2 - (a2- bl) sn2(w3)k’), 

W 3  = [(az- ~~) /2 I ’ /~~-F(k ’~4’ s ) ,  (IIU 

sin $3 = [(a2 -po)/(a2 - b1)Y2. 2 k” = 1 - k (a2 - b 1 ) / ( ~ 2  - b2), 

All three forms are periodic functions. It has to be noted, however, that only 
solution (111) is bounded, whereas the others assume infinite values within each period. 
If two or all three roots coincide, the solutions degenerate into elementary functions, 
which will be discussed below. 

Once p is determined, we should compute q5 from 

The first form gives q5 = q 5 ( ~ ) ,  the second q5 = q5(p). Since these integrals are not at all 
simple, we shall write down the phase only in some special cases. 

The other quantities of interest read 

j ”  = JjJp”D, 

H = $lgl[ ( po2 + p2)lg + iRd 1’ - + q 2 R  ‘I = f l g  I[ ( p2/2p)(B2 + D2) - Cp2], 

P= Iglp’pld +iRd12= - l g ( p O p ( f ~ p ~ - ~ ~ ,  

L = $ l g l p 2 ( l R  + i R 4 2 + f ~ R 4 ) = i l g J p 2 [ ( p 2 + D 2 ) / 2 p + C ] .  

(19) 

Positivity properties may be read off directly. Thus we see that H is not only positive for 
A >O, but also for A > O  and Cp2c0 .  It is perhaps interesting to observe that the 
expressions (19) can be integrated over T. This is accomplished by partial integrations 
and use of the differential equations for R and q5. The result is 

j T H  d T = & ( g ( [ 2 p 2 R k  - c(3p02+p2)T], 



1986 H Mitter and F Widder 

These formulae are useful if one wants to compute the energy or momentum contained 
in a finite volume, or the corresponding contribution to the action integral (for an 
infinite interval one may obtain an infinite result, as for linear plane waves). It is 
observed that the essential dependence on 7 is through p. 

Now we shall specify the constants appearing in the solutions (1)-(111). We recall 
that the integration constants read 

D = 2 ~ 0 4 0 ,  c = Po(lEPP0- (bo/2Po)2-&),  ( 2 1 )  

- c o c C ~ $ D ~ / ~ ,  ( 2 2 )  

in terms of the initial values (the index 0 means 7 = 0). The solution has the form (I) for 

and we have 

~ l = ( D ~ / 4 + J h ) ” ~ + ( D * / 4 -  JX)1/3, A = D 4 / 1 6 - 8 C 3 ~ / 2 7 ,  

G = U ’ ,  
( 2 3 )  

H is positive for C < 0, but not always for C > 0 (unless A < 0). Form (11) or (111) is 
obtained for 

E C ~ $ D ~ / ~ .  ( 2 4 )  

B = ( ~ u T - Z C ) ” ~ .  

The roots read 

a2 = 2(2~C/3)’” cos a/3 ,  b1.2 = -2(2€c/3)”*  cos(ct f 7r ) /3 ,  
( 2 5 )  

COS ct = ( 3 D 2 / 8 C ) ( 2 ~ C / 3 ) - ’ / 2 .  

H is not positive definite if there are three real roots and A > 0. 
There are some special cases in which the elliptic functions are in fact elementary 

functions. These elementary solutions can be found most easily from the original 
differential equation for R, and correspond to coinciding roots of the form (17). For 
E = 1 ,  A = 0 and D # 0 we obtain from forms (I) or (11) 

p = a [ 1 + $ c o t 2 ( ~ J ~ / 2 - P ) ] ,  

a = ( 2 ~ ~ ) ~ / ~ ,  sin p = [ 3 a / ( ~ p ~ + a ) ] ” * .  

H is only positive for sufficiently large argument of the cot. For E = - 1 ,  A = 0 and D # 0 
we obtain from form (111) 

= p o = ; ( 2 ~ 2 ) 1 / 3 .  4 = J G ,  (27) 

which corresponds to a monochromatic plane wave. For this solution we have H 2 0. 
Finally we shall give an exhaustive list of solutions with real fields. Then D = 0 and 

we have only one essential parameter C. The three forms given above can then be 
simplified using relations between Jacobian functions. The modulus of the elliptic 
functions becomes 

(28) 

a = (2C)’l2, (29) 

k :  = k2 = k’2 -1 - 2. 

With the abbreviation 

the argument can be written 

Wi = a ‘”7 - F,, i = 1,2, 3 ,  (30) 



Classical solutions of a nonlinear field equation 1987 

and the solutions are 

e = +1, C < 0 ,  

Fi = (l/JZ)F((l/JZ)I41), cos g1 = (Ri-a)/(R:+a), R i a a ;  

e = l ,  c=o, R = Jz Ro/(R0r + JZ); (32) 

E = + l ,  C>O, R = (2~)’” dn(wz)/sn(wz), 

F2 =F((1/J5)1#3), sin2 4 2  = 2a/(Ri + a) ,  R i a a ;  
E = -1, C<O, R = a cn( wg), 

F3 = F((l/fi)l$3), sin2 g3 = (a  - R;)/2a, R g s a .  

(33) 

(34) 

For solutions (31) and (32) H is positive definite. In the other cases H may become 
negative for A > 0. 

4. Spherical waves 

Another type of solution emerges if we require A to depend on x only through x,x’. 
We use the abbreviations 

s=IAlIx,x’I, 7 = In Ji, E = sgn A sgn x,xw, 
and write 

A = (I/ J ls)~ (7) e’“”. (36) 
If we insert this ansatz in the field equation (l) ,  we obtain differential equations in 7 for 
R and 4. We recover again equation (13) from current conservation. Thus we have 
equation (14) again and can carry through the same steps as before. The equation for 
the radial part becomes 

R - R - eR3 - D2/4R3 = 0, 

and we obtain equation (16) again, where now 

f(x) = ex3 + 2x2 - 2Cx - D2/2, (37) 
so that the solution p = R 2  is again an elliptic function which can be written in one of the 
forms (1)-(111) given before. The additional term 2x2 introduces no new features, but 
does introduce some computational complications. The current is now 

j ”  = (~D/A)x’/(x,,x~)~, 
and we have 
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We have not found other forms of these quantities from which simple positivity 
properties can be read off. Neither are the integrals on 1x1 straightforward. It is 
observed that the quantities (39) as well as the current (38) decrease rather quickly for 
large distances x 2  and become singular at the light cone. These properties are related to 
the f a c t o r ~ - l ’ ~  in A, which is a trace of the dilatation invariance of equation (1). With 
the exception of some degenerate cases (see below), the three types (I)-(111) of spherical 
solutions are invariant with respect to ‘discrete’ dilatation transformations: if the 
logarithm of the scale factor 9 is proportional to an integer multiple of the period of the 
solution, A remains unchanged under the corresponding dilatation (the fixed propor- 
tionality constant depends on the type). This type of dilatation was discussed some time 
ago in connection with quantum field theory (Mitter 1964). 

We shall now write down the constants appearing in solutions (I)-(111) which are a 
little more complicated than for plane waves. The integration constants are now 

D = 2~040 ,  c = P o ~ 3 ~ . p o - ~ P o / ~ P o ~ 2 - ~ ~ +  11. (40) 

With the abbreviation 

h = 1 + 3 ~ C / 2 ,  (41) 

we note the following results: Form (I) applies if 

either C s -f for any D2 3 0, 

or C 2 -4 for 1 + 9C/4 + h2j3 zs 27D2/32, 

and we have 

al  =$[-I + (Jh- 1 -9C/4 +27D2/32)‘I3 -(Jh+ 1 +9C/4 -27D2/32)”3], 

A = 27D4/128 - (D2/2)(1 + 9C/4) - C2/2 - C3,  

G = al +3,  2 

Form (11) or (111) applies if 

(43) 
B = (3a :+4a l -2~) ’ /2 .  

EC 3 -4, 1 + 9 ~ C / 4  + h2l3  a 27D2/32. (44) 

a2 = $ ( - E  + 2h213 cos (Y/3) 

The roots read 

61,2 - 2h213 cos((Y * 7 F ) / 3 ~  

COS (Y = -(Jh2/’)(1 + 9 ~ C / 4 - 2 7 0 ~ / 3 2 ) .  

(45) 

For coinciding roots the solutions can, as before, be written in terms of elementary 
functions. For E = 1, A = 0 we obtain 

(46) sin2 p = 2Jh/[po + $(I + Jh)]. p=--g+Th 2 4 1/2 [ 1 + ~ 0 t ~ ( ~ h ” ~ - / 3 ) ] ,  

For E = -1,  A = 0 we have 

p = po = $(1+ Jh) ,  cb = (D/2Po)T. (47) 

For this solution H is positive. The field only takes up a constant phase factor under 
(arbitrary) dilatations. 
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In the general cases we have not found explicit analytic expressions for the phase 

Finally we shall give a complete list of solutions for D = 0 (real field). With 

y = (1 + 2 d y 2  

R = (2~)~/’dn(wllkl)/sn(wllkd, 
W i  = 71’2T-F(kil$i), sin’ = 2y/(Rg+ 1 + y ) ;  

(48) 

we have: for E = 1, C>O, 

k: = (1 + 71/27, 
(49) 

f o r E = 1 , - $ < ~ < 0 ,  

R = (1 + Y)”’ cn(w~lk2)/sn(w2lk2), k; = 27/(1+ Y ) ,  
(50) 

W2 = [(I + 7)/2]1/2T -F(kz1$2), sin2 G2 = (1 + r ) / (R i  + 1 + 7 ) ;  

for 4 = I, c < -f, 
R = (-2C)’l4 cn(w3lk3)/sn(w3lk3) dn(w3lk3), k: = f(1- l/J--E, 

(51) 
W 3  = (-c/2)1’4T -$F(k31*3), c o s ( 1 3 = ( R ( : - J ~ ~ / ( R g + ~ E ;  

f o r E = - l , C < O ,  

R = (1 + y)”’ cn(w41kl), 

sin’ lj14 = (I + y - R ~ ) / ( I  + y ) ;  

W 4 =  y1/27-F(ki($4), 
(52) 

for € = - I ,  o < c < ~ ,  
R = (1 + y)”’ dn(w51k2), W s  = [(I 7)/2I1/’T-F(kz1J/s), 

(53) 
sin2 +s = (I + y - R;)/(I + y). 

R = (Ro+ tan ~ / J z ) / ( l -  Ro tan T/JZ); (54) 

R = Ro/[cosh 7 - (1 f Ri/2)’/’ sinh 71; ( 5 5 )  

R = l .  (56) 

1 The degenerate cases are: for E = 1, C = -T, 

for ~ = f l ,  C=O,  

1 f o r e = - l , C = Z ,  

The last solution is invariant under arbitrary dilatations. In addition H is positive. 

5. Some applications of spherical solutions 

Even with the simple expressions for R given by equations (49)-(56) for real fields it is 
not always possible to obtain simple formulae for the field 

(57) 

In general, the structure is dominated by the singularity s-l” with the superimposition 

A = R ( T  = In JS)/JS, s = Ih I Ix,,x’’~. 
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of oscillations which are periodic in 7. For E = 1 these oscillations are themselves 
unbounded. For E = - 1 no additional singularities are introduced. The behaviour for 
s # 0 can be studied with the aid of Fourier or power series expansions of the Jacobian 
functions. Close to s = 0 these expansions are not useful, since the oscillations become 
more and more rapid with decreasing s. 

Some of the solutions described here have been used before. If we take R from 
equation ( 5 5 )  we obtain 

A = a / ( l  -a2Ax2/8) ,  ( 5 8 )  

which exhibits a simple pole for A x 2  > 0 and no singularity for the other sign. This 
singularity has been interpreted as a shock wave (Burt and Ponik 1976) which moves 
with a velocity v S c for A B 0 and acquires the speed of light after an infinite time xo. 
The solution ( 5 8 )  is also of relevance for the instanton solution of Euclidean gauge field 
theory (Corrigan and Fairlie 1977). 

As has been remarked in 5 2 one may obtain from any of the solutions given above 
new solutions using the invariances of equation (1). This may influence the singularities 
and change the propagation pattern of the solution. In order to indicate what can 
happen we shall give an example. If we start from the field (57) with any one of the 
solutions (49)-(56) and apply a translation x” + x w  -c”, followed by a conformal 
transformation (9), (10) with 

b” = -c’/2c2, (59) 
we obtain a solution in the form 

with a constant K. A solution of this type with R from equation (53) has been used in 
connection with gauge theories in Minkowski space (Cervero et a1 1977) and has 
provided some insight into the relation of Euclidean instantons and Minkowskian 
meron solutions. The same procedure applied to ( 5 8 )  gives, with the choice Aa2c2 = -2, 
the iristanton 

A = 2ac2 / (x2  + c 2 ) ,  (61) 

whereas (60) with (56) gives (cf de Alfaro ef a1 1976, 1977) 

(62)  2 112 A = K / [ ~ ( x  - c ) ~ ( x  + C) I] . 
It is obvious that similar considerations could be carried out for more general trans- 
formations than (59), and that they apply also for complex fields and the plane wave 
solutions of 5 3. Whether these considerations are useful depends on the meaning 
which one wants to ascribe to the field A. Any speculation on this question is beyond 
the scope of our approach. 
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